Synthesis and Structure of the First Dimetalated Diphosphane Disulfide [(η⁵-C₅Me₅)(CO)₂FeP(H)(S)]₂

Lothar Weber*, Hanns Misiak, Hans-Georg Stammler, and Beate Neumann

Fakultät für Chemie der Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany

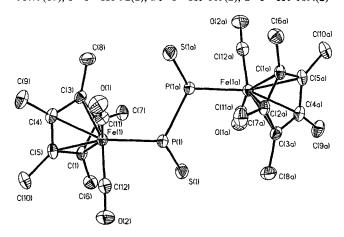
Received December 20, 1994

Key Words: Diphosphane disulfides / Metallophosphoranes

The first transition metal derivative $meso-[(\eta^5-C_5Me_5)(CO)_2$. FeP(H)(S)]₂ (2) of the unknown diphosphane disulfide [PH₂(S)]₂ results from treatment of $(\eta^5-C_5Me_5)(CO)_2$ FePH₂ (1)

with 1.5 equivalents of elemental sulfur. Compound 2 was characterized by means of spectroscopy (IR, ^{31}P , ^{31}P { ^{1}H }, ^{13}C { ^{1}H }, ^{1}H NMR) as well as X-ray diffraction analysis.

In contrast to the parent compound $H_2(S)P-P(S)H_2$, tetraorganodiphosphane disulfides are easily available by a number of synthetic routes including the oxidation of the corresponding diphosphanes with elemental sulfur^[1-3] or the treatment of thiophosphoric trichloride or alkyl thiophosphonic halides with Grignard reagents^[3-6]. There is only one report in the patent literature, that is focused on the synthesis of disecondary diphosphane disulfides^[7]. They were prepared by reaction of $R_2^1N(R^2)P-P(R^2)NR_2^1$ with an excess of H_2S , where R^2 = alkyl, aralkyl, cycloalkyl, or aryl.


During the course of our studies on the chemical behavior of metallophosphanes complex $1^{[8]}$ was allowed to react with 3/8 equivalents of S_8 in the temperature range of -100 to $20\,^{\circ}\text{C}$. The chalcogene dissolved at about $0\,^{\circ}\text{C}$ with effervescense of H_2S , whereupon the color of the solution turned to deep red. Deep red microcrystalline 2 was isolated in $61\,^{\circ}$ by crystallization.

According to the ${}^{31}P\{{}^{1}H\}$ -NMR spectrum of the reaction mixture, which is dominated by a singlet at $\delta = -3.50$ for compound meso-2, the formation of other products, e.g. the (R,R) or (S,S) diastereoisomers, can be excluded. The ${}^{1}H$ -coupled spectrum features a 1:2:1 triplet at $\delta = -3.50$ with $J_{\rm P,H} = 363.9$ Hz. Obviously, the ${}^{31}P$ nucleus experiences two magnetically equivalent ${}^{1}H$ atoms. In the ${}^{1}H$ -NMR spectrum a doublet at $\delta = 6.72$ (${}^{1}J_{\rm P,H} = 363.8$ Hz) is attributed to the hydrogen atoms at phosphorus. The presence of integral $(\eta^{5}$ -C₅Me₅)(CO)₂Fe building blocks is manifested by a singlet for the C₅Me₅ ring protons at $\delta = 1.32$ and singlets at $\delta = 8.7$ and 97.4 for the ring carbon atoms, respectively. The two intense

bands of the carbonyl stretching modes in the IR spectrum of 2 ($\tilde{v} = 2016$, 1966 cm⁻¹) are markedly shifted in comparison with the starting material ($\tilde{v} = 1987$, 1936 cm⁻¹)^[8].

The molecular structure of *meso-2* was established by an X-ray diffraction study. The molecule is best described as a diphosphane 1,2-disulfide which is functionalized at each phosphorus atom by an $(\eta^5-C_5Me_5)(CO)_2$ Fe group via Fe-P single bonds of 2.2647(11) Å. Usually, Fe-P distances in low-valent carbonyliron complexes range from 2.12-2.39 Å^[9]. A P-P distance of 2.234(2) Å is consistent with a single bond^[10]. The PS double bond length in **2** was determined to be 1.9899(13) Å which is at the upper end of such distances found in a number of phosphane sulfides (1.87-1.97 Å^[11]).

Figure 1. ORTEP-type representation of the molecular structure of **2** in the crystal. Thermal ellipsoids are represented on a 50% probability level. Selected bond lengths [A]: Fe-P 2.2647(11), P1-S1 1.9899(13), P-P 2.234(2), P-H 1.37(4), Fe-C11 1.773(3), Fe-C12 1.763(3), Fe-C $_{\rm Ring}$ = 2.112(3)-2.155(3). - Selected bond angles [°]: Fe-P-S 118.63, Fe-P-P 114.69(5), P-P-S 110.65(6), P-Fe-C11 93.72(10), P-Fe-C12 86.38(10), C11-Fe-C12 95.79(13), P-P-H1 92(2), Fe-P-H1 109(2), S-P-H1 109.(2)

The severe distortions of the P tetrahedra are evident by bond angles varying fom 92° (P-P-H) to 118.63° (Fe-P=S). The atoms Fel-Pl-Pla-Fela are located in the same plane (torsion angle = 180°), whereas the torsion angle Fel-Pl-Pla-Sla amounts to

42.5°. To the best of our knowledge **2** is the first dinuclear transition metal complex with a bridging diphosphanyl disulfide ligand.

Experimental

All manipulations were performed under dry N₂. Solvents were rigorously dried with an appropriate drying agent and distilled before use. Complex 1 was prepared as described^[8]. – IR: Mattson Polaris (FT-IR)/Atari 1040 STF. – ¹H, ³¹P, ¹³C NMR: Bruker AC 100 (¹H, 100.131; ¹³C, 25.180; ³¹P, 40.539 MHz) and Bruker AM 300 (100; ¹H, 300.1; ¹³C, 75.5; ³¹P, 121.7 MHz). Standards: SiMe₄ (¹H, ¹³C), 85% H₃PO₄ (³¹P).

1,2-Bis[dicarbonyl(pentamethylcyclopentadienyl)ferrio]diphosphane 1.2-Disulfide (2): A solution of 0.44 g (1.57 mmol) of (η^5 -C₅Me₅)(CO)₂FePH₂ (1) in 2.5 ml of toluene was rapidly cooled to -100°C before the addition of 0.076 g (2.36 mmol) of elemental sulfur. The well stirred mixture was allowed to warm to ambient temp. At about 0°C the color of the mixture changed to deep red. All of the sulfur dissolved, and evolution of H₂S was observed. When the H₂S evolution had ceased, the solution was stored at -30 °C for 24 h. A red microcrystalline precipitate of 2 was filtered and dried in vacuo. Yield: 0.34 g (61%), m.p. 120 °C. - IR (cm⁻¹, C_6D_6): $\tilde{v} = 2016$, 1966 (C=O). $- {}^{1}H$ NMR (C_6D_6): $\delta = 1.32$ (s, 30 H, C₅Me₅), 6.72 [d, ${}^{1}J_{(P,H)} = 363.8$ Hz, 2H, PH). $- {}^{13}C\{{}^{1}H\}$ NMR (C₆D₆): $\delta = 8.7$ [s, C₅(CH₃)₅], 97.4 [s, C₅(CH₃)₅], 213.2 (s, CO), 213.5 (s, CO). $-3^{1}P$ NMR (C₆D₆): $\delta = -3.50$ ["t", ${}^{1}J_{(P,H)} =$ $^{2}J_{(P,H)} = 363.9 \text{ Hz}$]. - $C_{24}H_{32}Fe_{2}O_{4}P_{2}S_{2}$ (622.3): calcd. C 46.32, H 5.18; found C 46.40, H 5.33.

X-Ray Analysis of **2** · 2 $C_7H_8^{[12]}$: Single crystal from toluene; $0.5 \times 0.4 \times 0.3$ mm; Siemens P2(1) diffractometer; Mo- K_{α} (graphite monochromator, $\lambda = 0.71073$ Å), empirical formula

 $C_{24}H_{32}Fe_2O_4P_2S_2 \times 2 C_7H_8$, space group $P\bar{1}$; unit cell dimensions: $a=7.541(2),\ b=10.408(4),\ c=13.185(4)\ Å;\ \alpha=75.23(3),\ \beta=75.89(2),\ \gamma=83.38(3)^\circ;\ d_{calcd.}=1.382\ g\ cm^{-3},\ V=968.9(5)\ Å^3,\ Z=1;\ \mu(Mo-K_\alpha)=0.976\ mm^{-1};\ range for data collection <math>2\Theta_{max}=55^\circ;\ \omega$ scan; index ranges: $0\le h\le 9,\ -13\le k\le 13,\ -16\le l\le 17;\ reflections collected 4809;\ independant reflections 4473;\ parameters 227;\ no absorption correction. Structure solution: direct methods, structure refinement: Full-matrix least-squares on <math>F^2,\ R_F=0.0443,\ wR_F^2=0.0992$ based on 3350 reflexions with $I>2\sigma(I)$, with $w=1/[\sigma^2(F_0^2)+(0.0555P)^2]$ where $P=(F_0^2+2F_0^2)/3$.

[5] L. Maier, Chem. Ber. 1961, 94, 3043-3050.

[10] K. F. Tebbe, Z. Anorg. Allg. Chem. 1980, 468, 202-212.

[11] D. E. C. Corbridge, *Phosphorus*, 2nd ed., Elsevier, Amsterdam, 1980, p. 27.

[439/94]

^[1] K. Issleib, A. Tzschach, Chem. Ber. 1959, 92, 704-711.

^[2] K. Issleib, W. Seidel, Chem. Ber. 1959, 92, 2681-2694.

^[3] K. Sasse, Methoden Org. Chem. (Houben-Weyl), 4th ed. 1963, vol. XII/1, p. 187-189.

^[4] H. Heydt, M. Regitz, Methoden Org. Chem. (Houben-Weyl) 4th ed. 1982, vol. E1, p. 215-219.

^[6] L. Maier (Monsanto Chemical Co), U.S.P. 3075017, 1963; Chem. Abstr. 1963, 58, P13995c.

^[7] L. Maier (Monsanto Chemical Co), U.S.P. 3496235, 1970; Chem. Abstr. 1970, 72, P132959r.

^[8] L. Weber, R. Kirchhoff, H.-G. Stammler, B. Neumann, Chem. Ber. 1992, 125, 1553-1557.

^{9]} L. Weber, S. Buchwald, D. Lentz, O. Stamm, D. Preugschat, R. Marschall, *Organometallics* 1994, 13, 4406-4412, and ref. cited herein.

^[12] Additional details on the crystal structure determination are deposited at the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, and may be reguested by quoting the depository number CSD-58906, the names of the authors, and the literature citation.